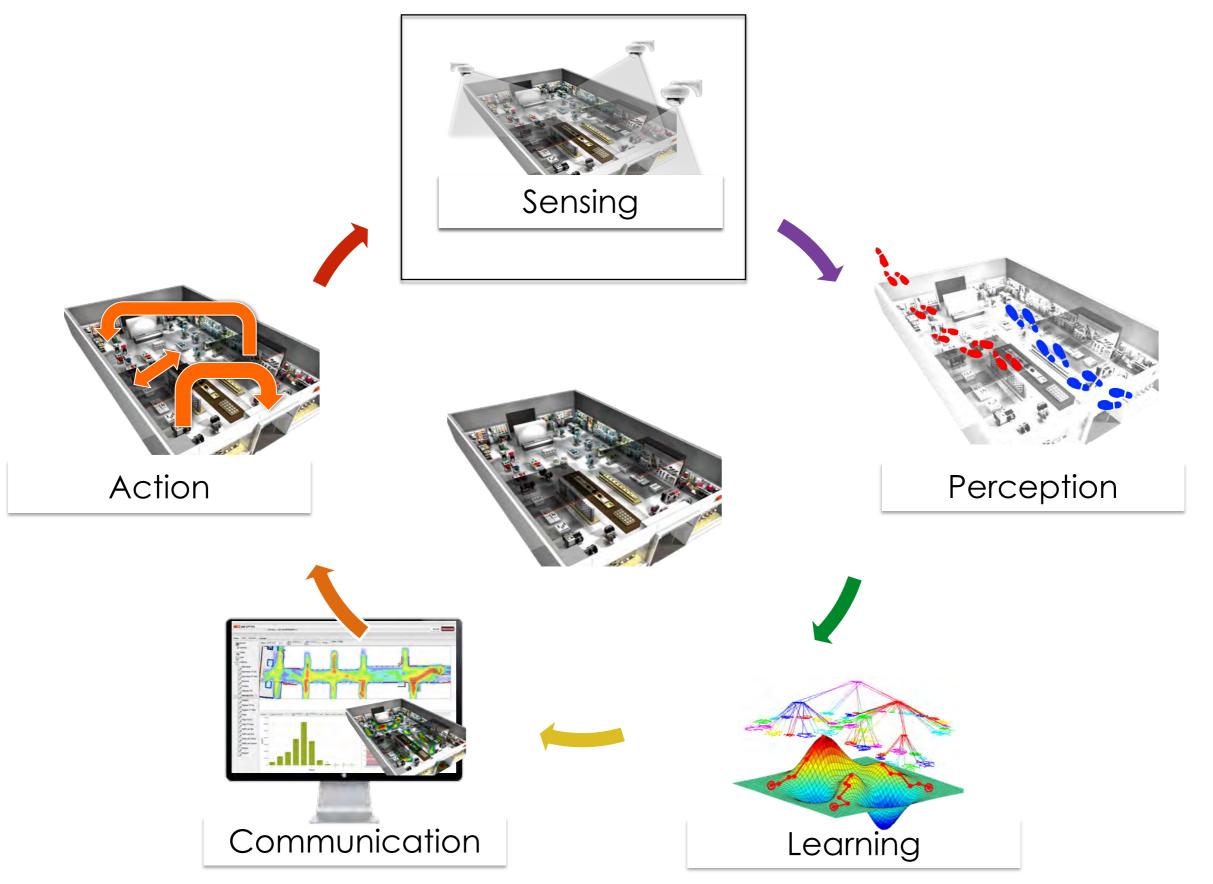


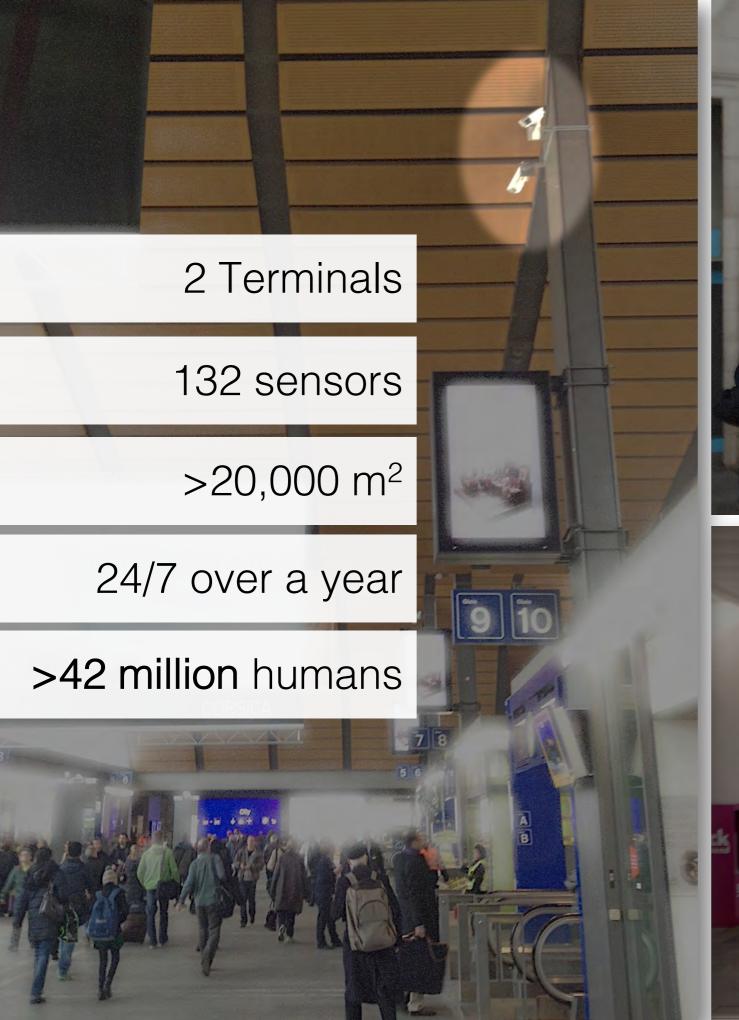
"Man is by nature a social animal" - Aristotle

How can machines learn human-human interactions?

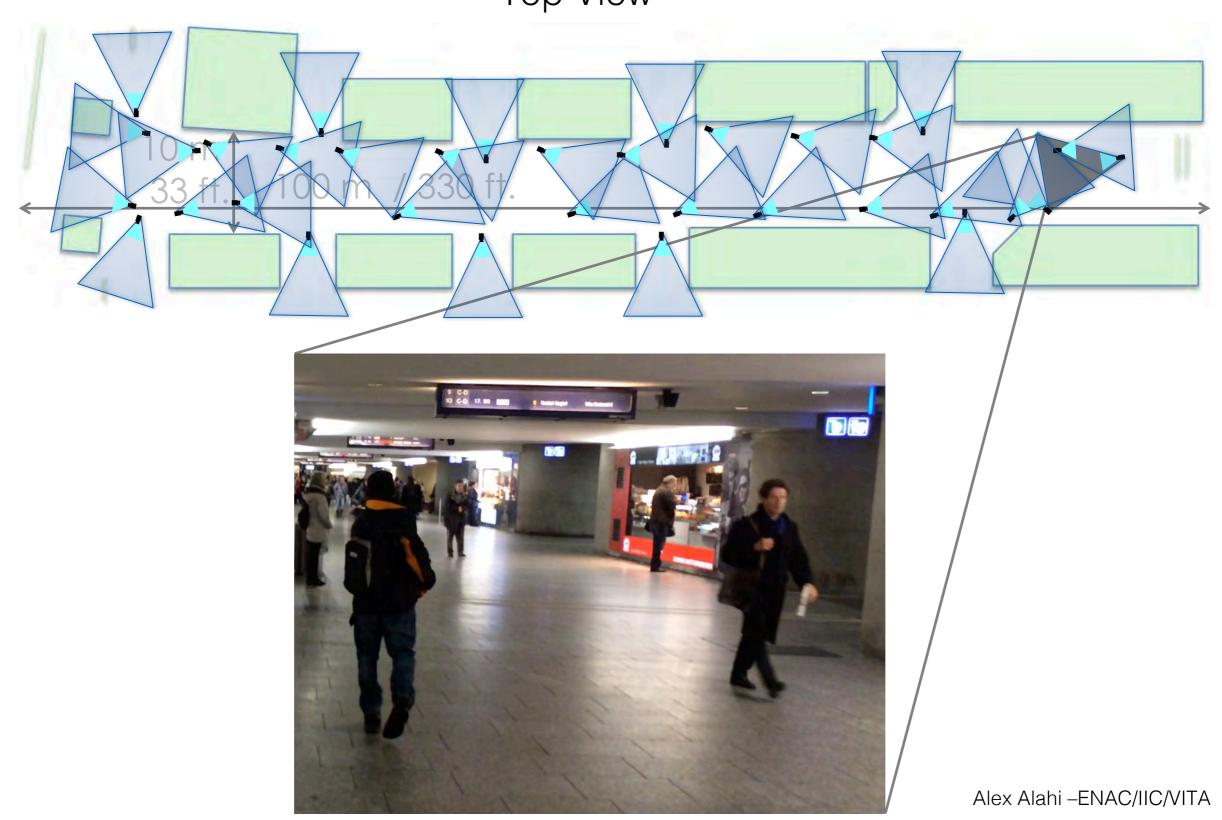
How can machines learn human-space interactions?

Al for the built environments

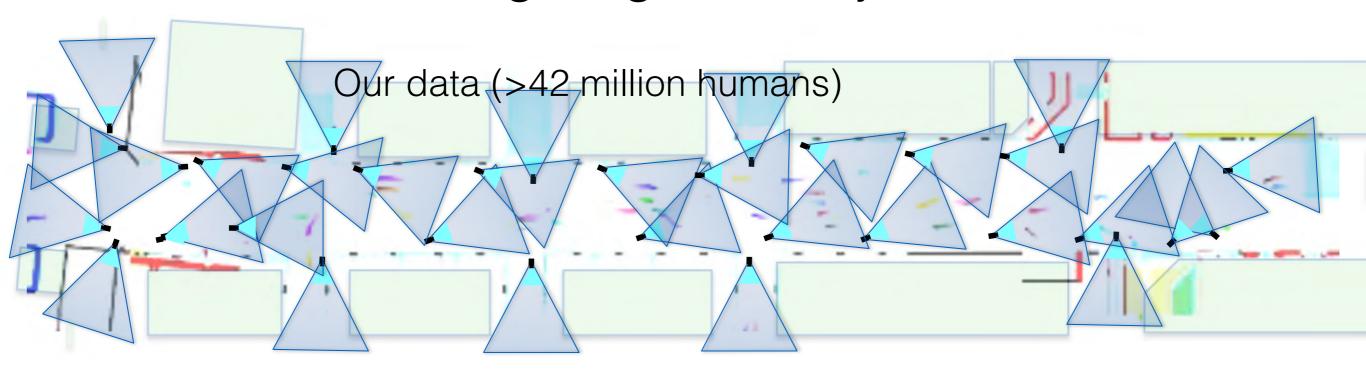




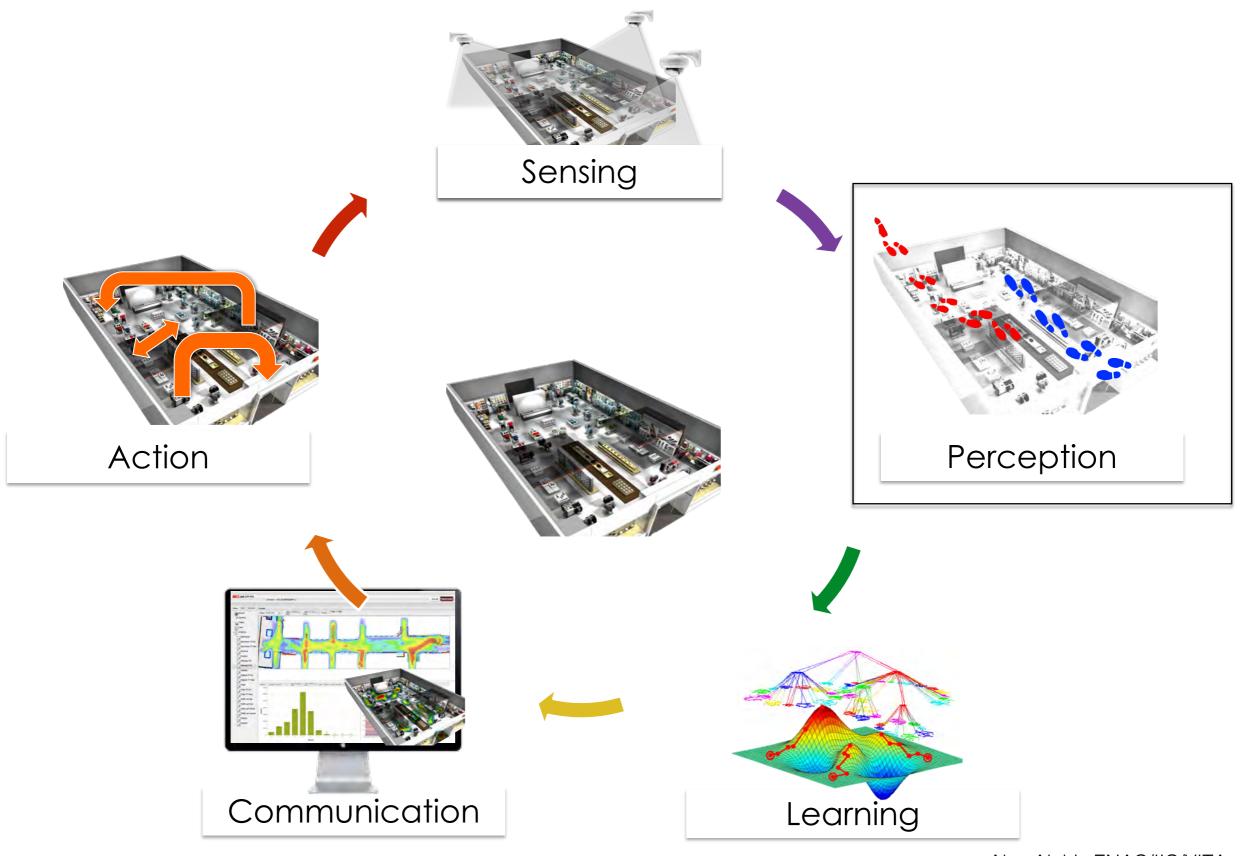
A corridor with 32 sensors



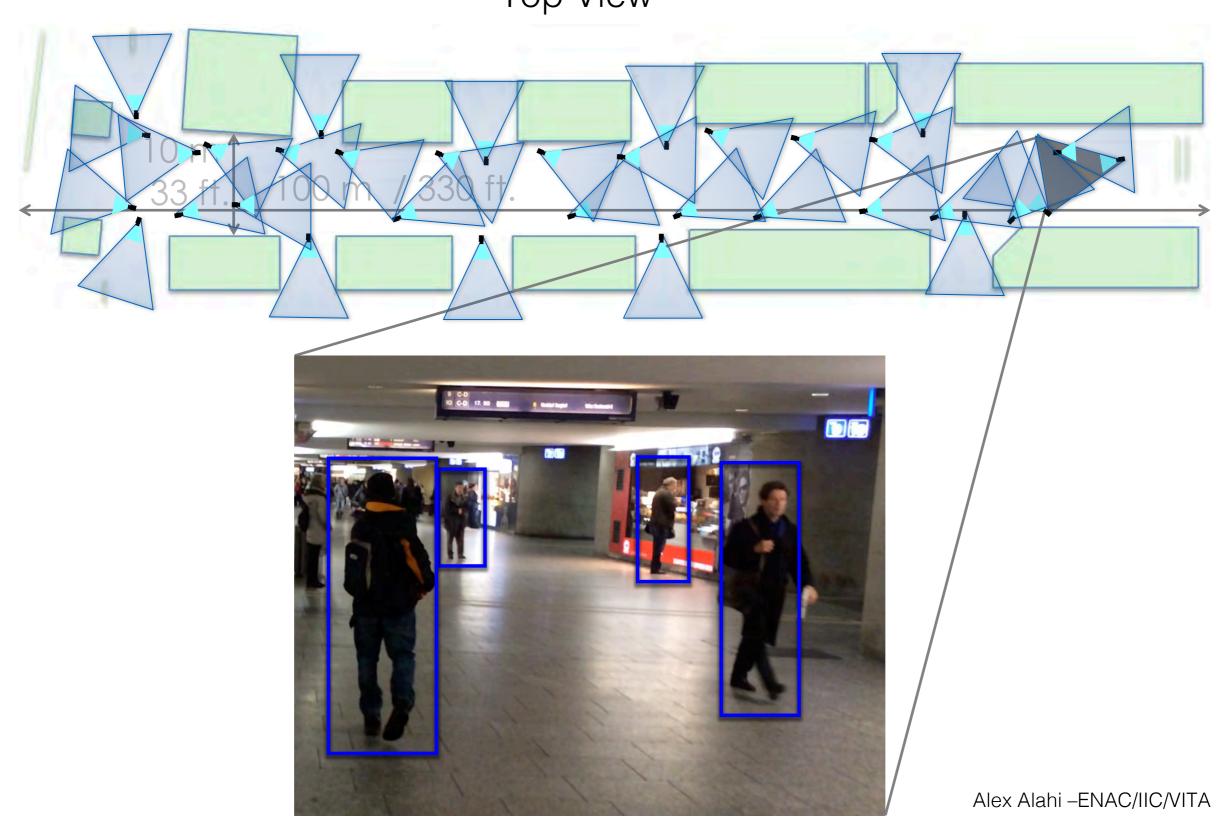
Collecting long-term trajectories



Al for the built environments



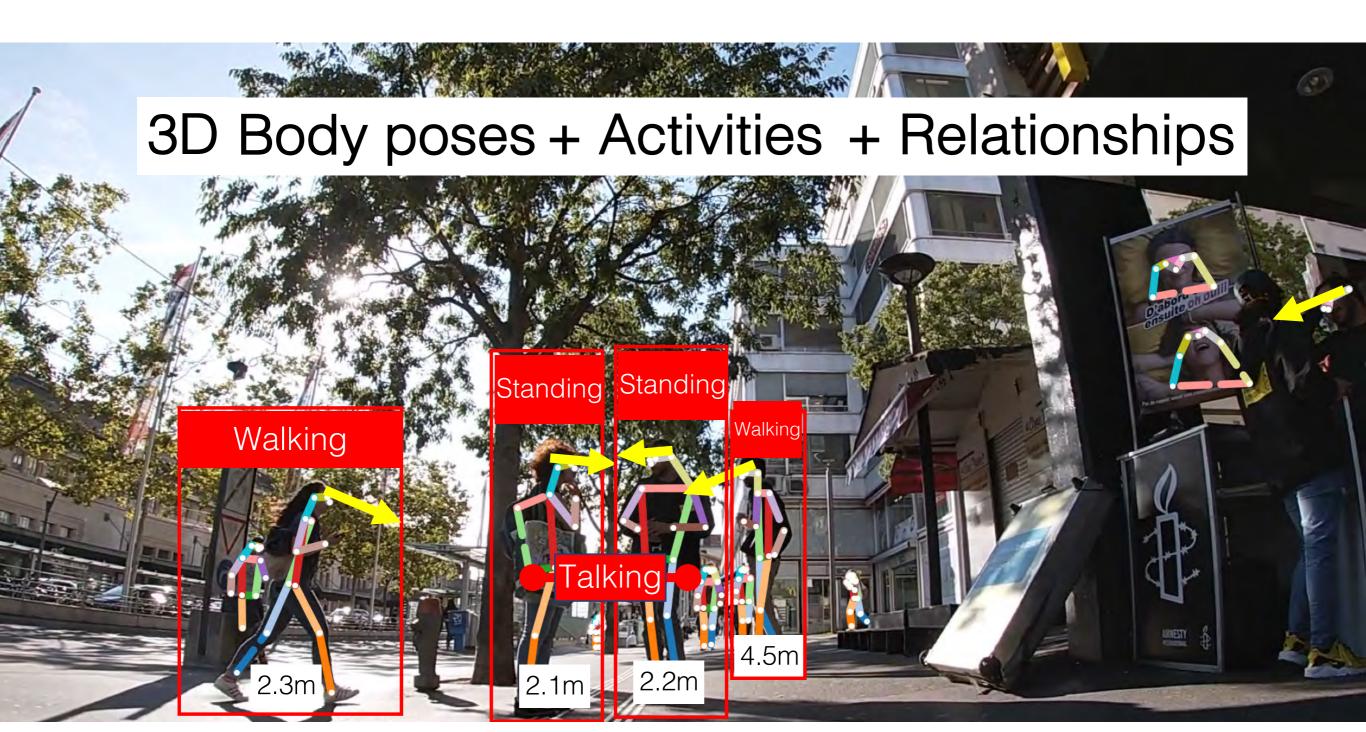
A corridor with 32 sensors



Perceiving



Perceiving Socially-aware cues



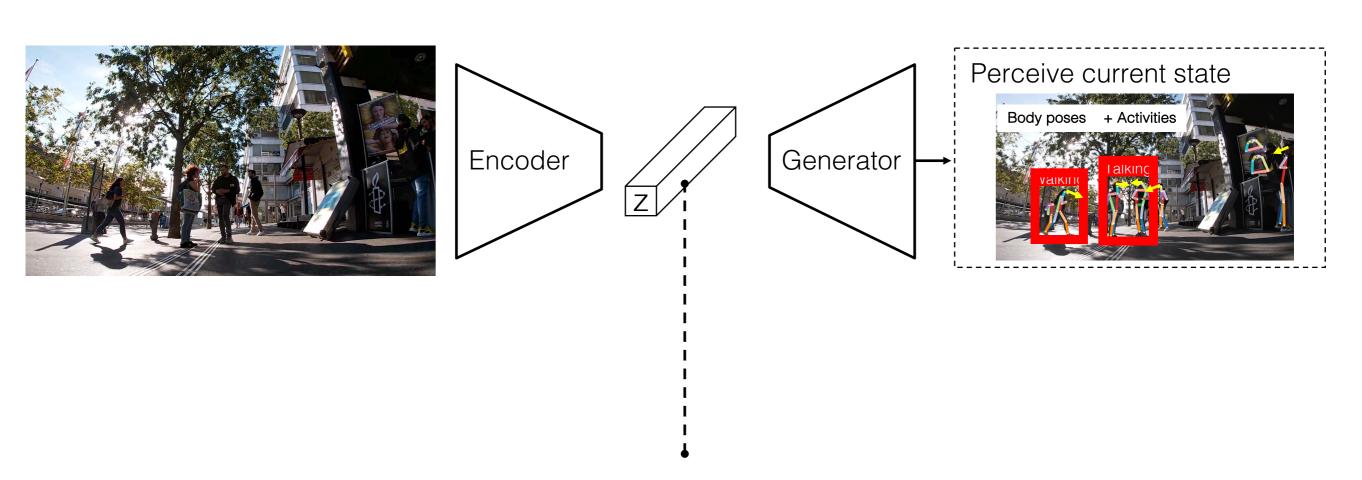
Our work

- [1] PifPaf: Composite Fields for Human Pose Estimation, CVPR'19 (Live Demo: https://vitademo.epfl.ch)
- [2] Convolutional Relational Machine for Group Activity Recognition, CVPR'19
- [3] Monoloco: Monocular 3D pedestrian localization and uncertainty estimation, ICCV'19

Computer vision for the built environments

3 Challenges:

- 1- Limited resolution with partial information
- 2- Efficiency (Real-time)
- 3- Many tasks with unbalanced labels



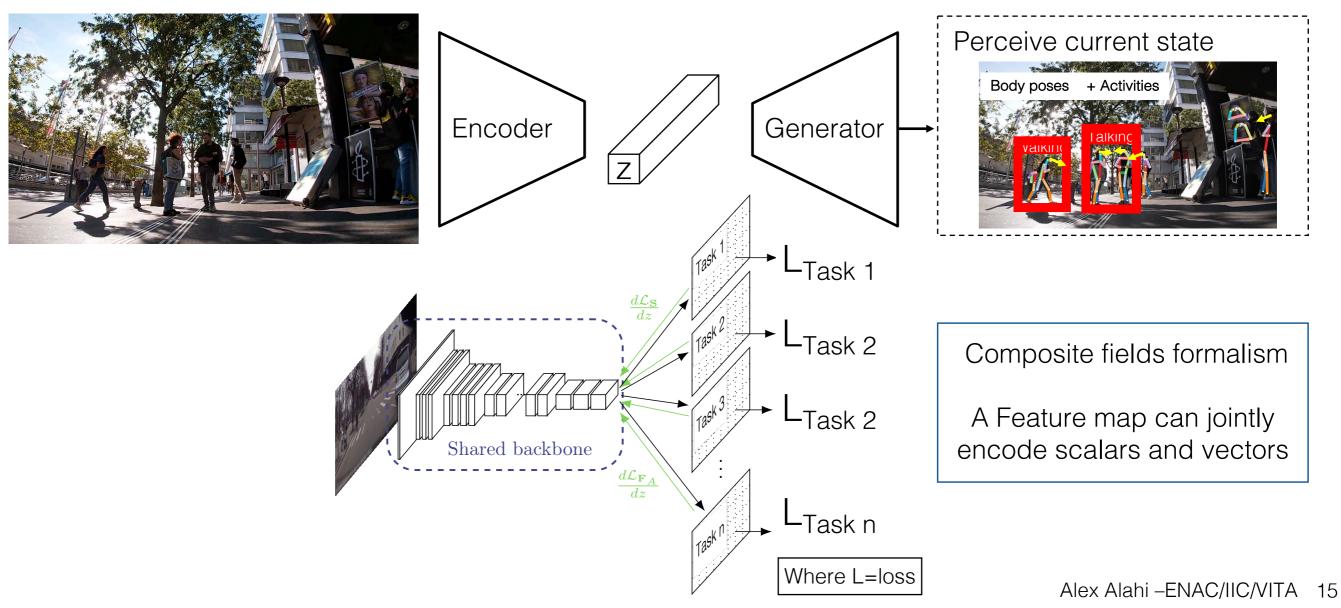
Shared representation for

Perception

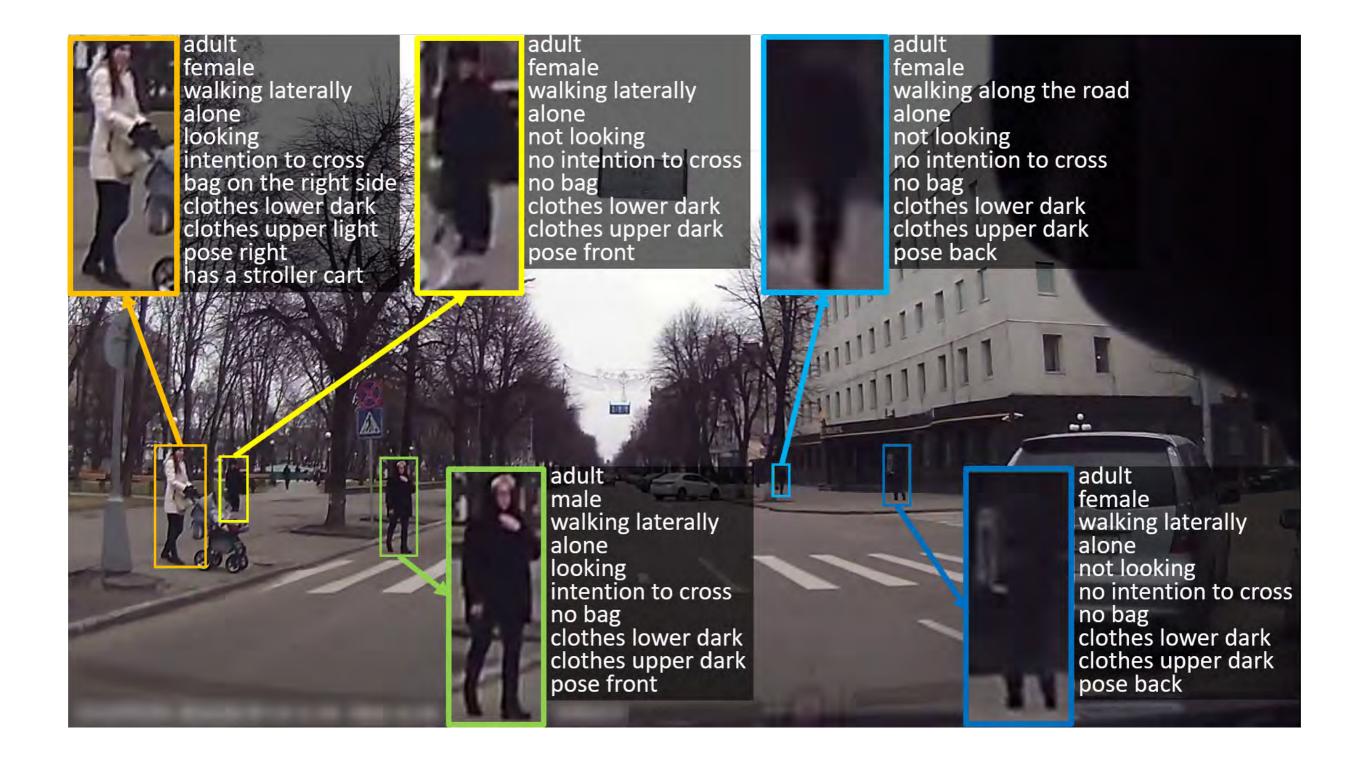
Computer vision for the built environments

3 Challenges:

- 1- Limited resolution with partial information
- 2- Efficiency (Real-time)
- 3- Many tasks with unbalanced labels

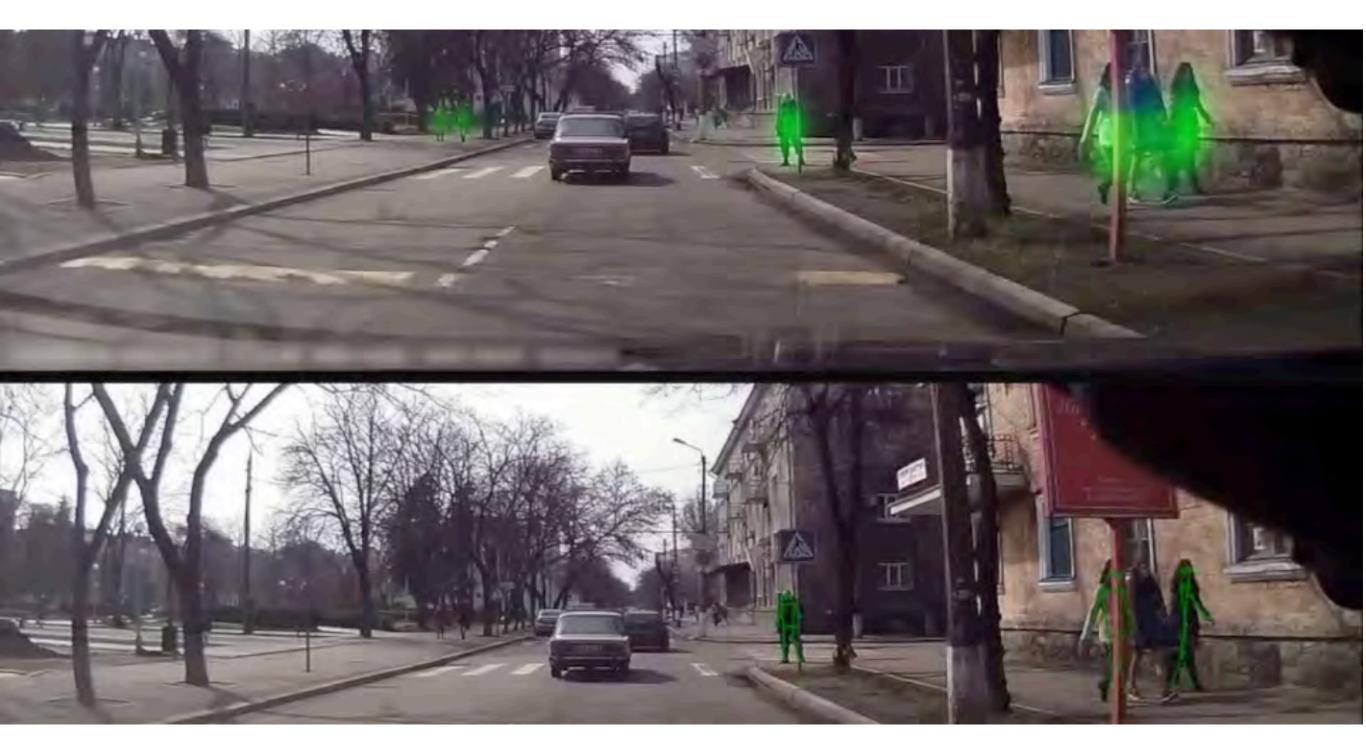


Jointly Perceiving 32 Attributes on Pedestrian's Appearance, Behaviour, Intention



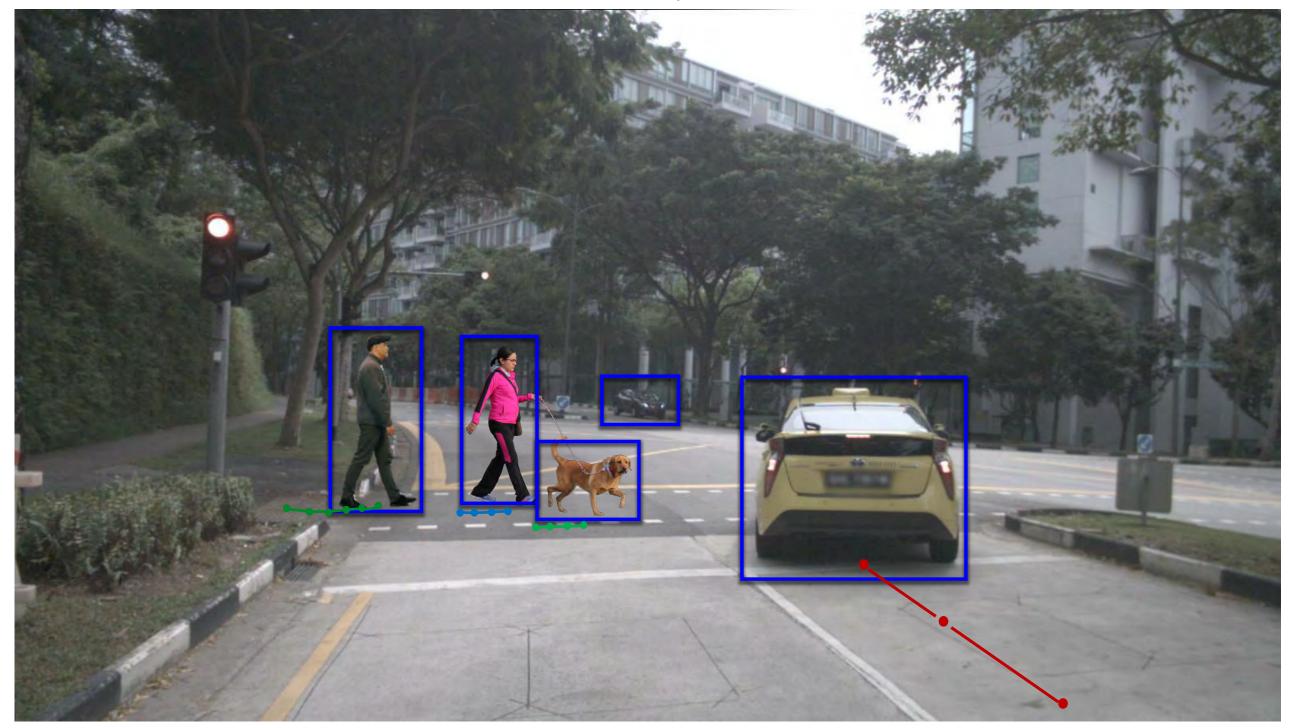
Perceiving **Intentions**

Intention to cross (in blue), or not (in green)

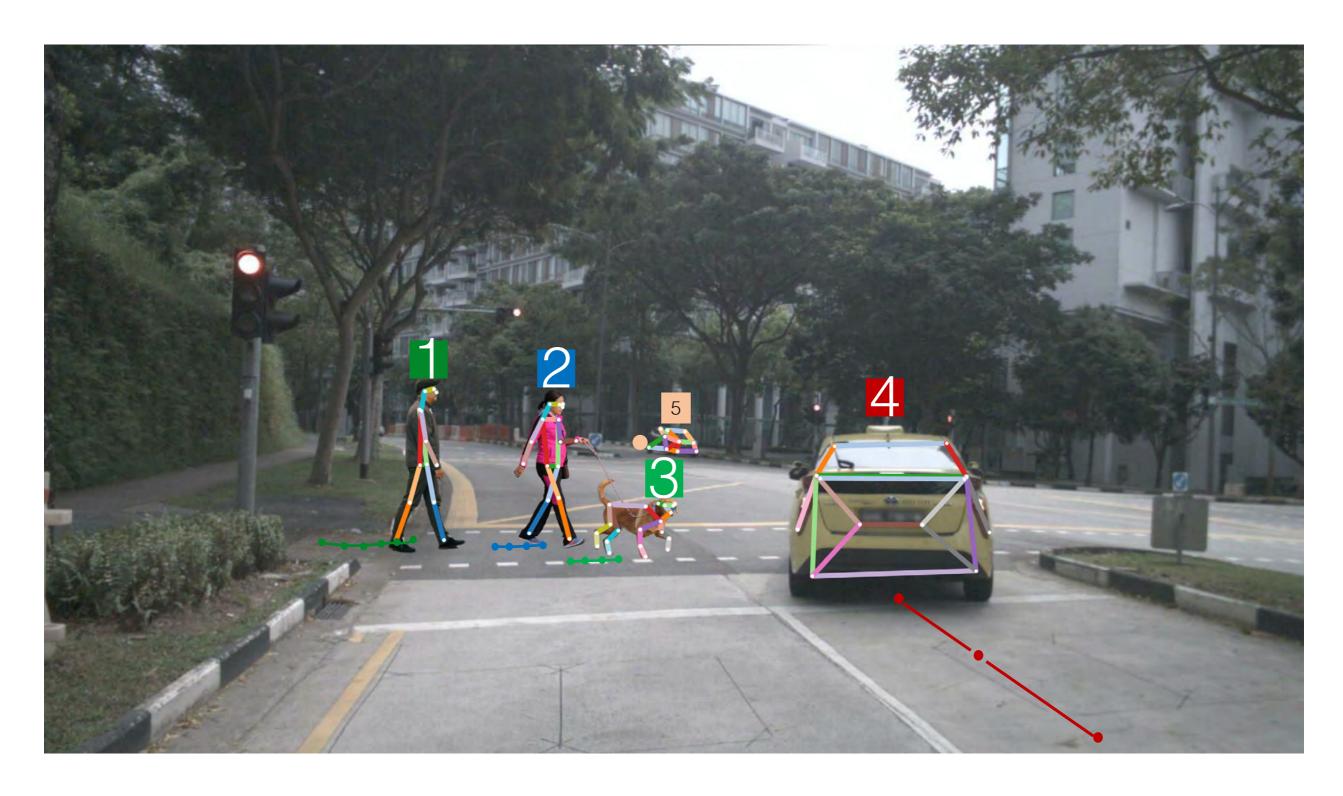


Object Detection & Tracking

2 steps



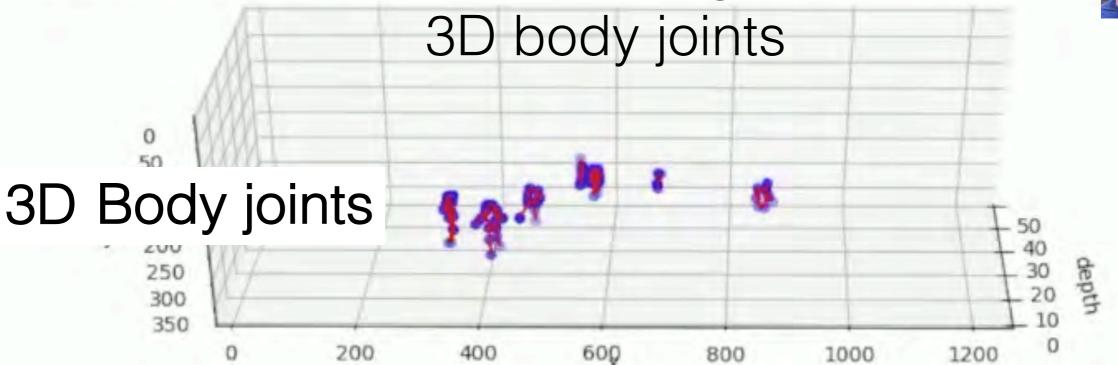
Semantic keypoints Joint Detection & Tracking



Perceiving

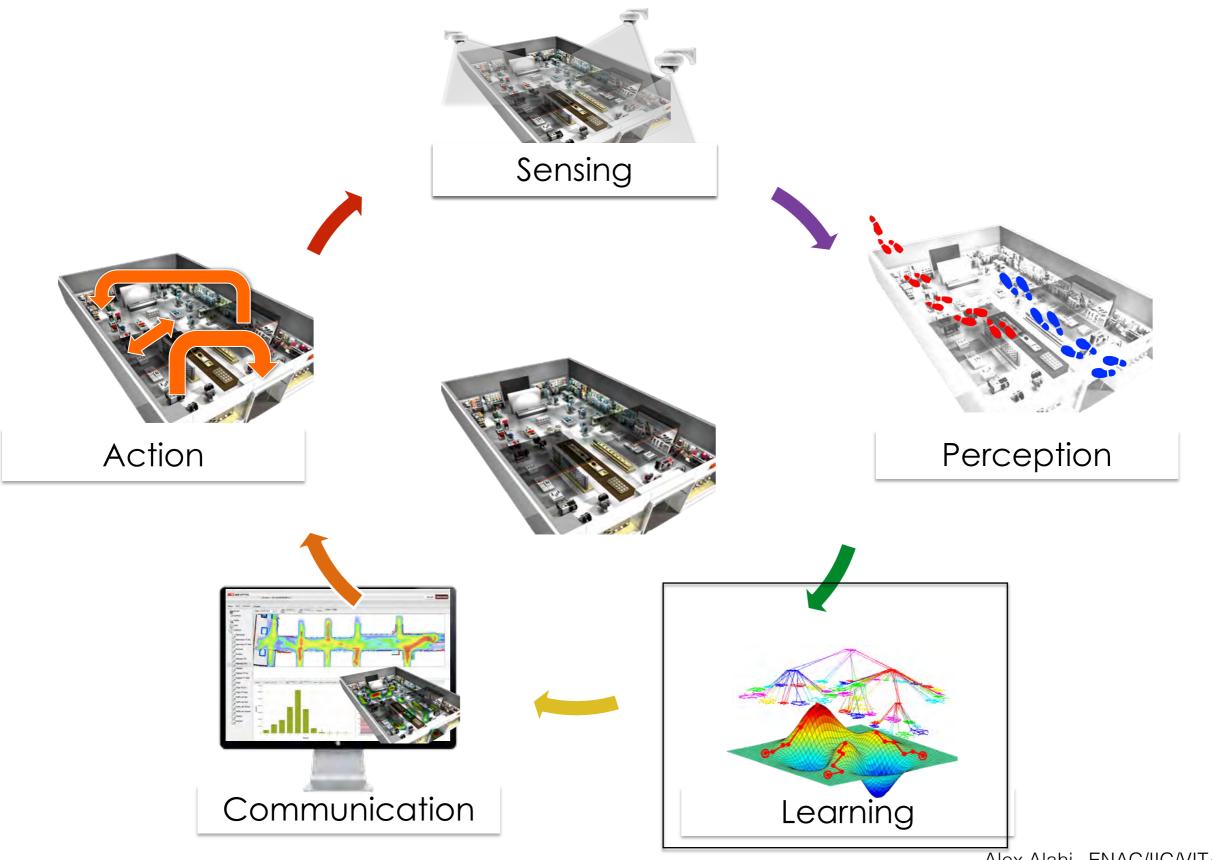
1200

1000



800

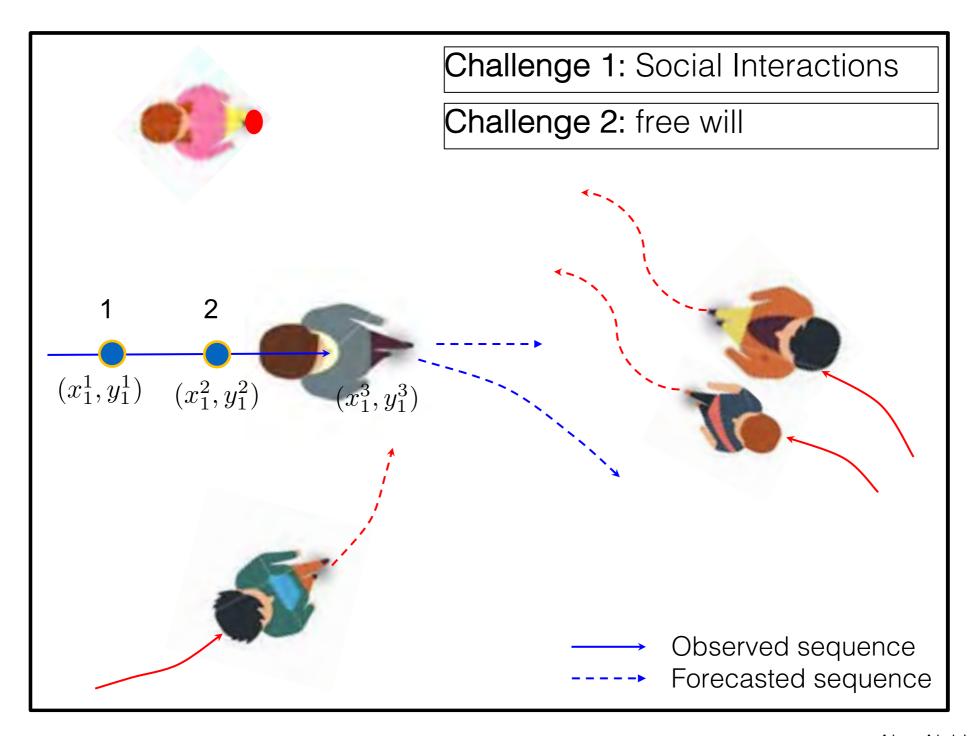
Al for the built environments



Social Forecasting

Input: Given a sequence of states, e.g., (xt,yt) coordinates in time

Output: Predict the future states, e.g., next 5 seconds

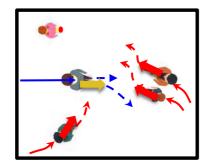


Social Forecasting

Previous works

Knowledge-driven

- Social Forces Model [1],



- Discrete Choice Model [2]

$$U$$
 = V + E Utility Systematic Random

✓ Interpretability

X Predictability

Previous works

[1] Helbing et al., Physical review, '95

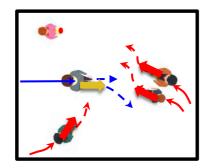
[2] Antonini et al., Transportation Research, '06

Social Forecasting

Previous works

Knowledge-driven

- Social Forces Model [1],



- Discrete Choice Model [2]

$$U$$
 = V + E Utility Systematic Random

✓ Interpretability

X Predictability

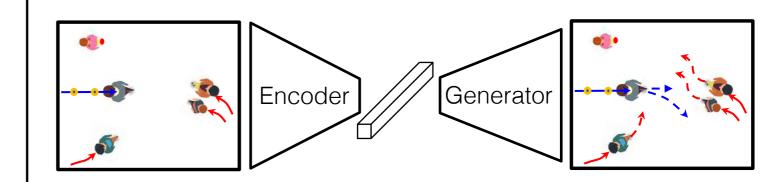
Previous works

[1] Helbing et al., Physical review, '95

[2] Antonini *et al.*, Transportation Research, '06

Our works

Data-driven methods

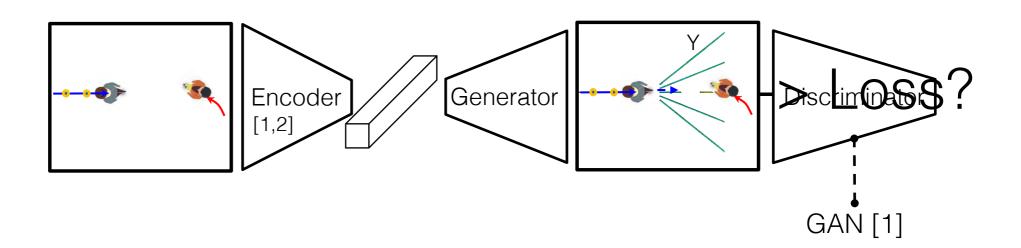


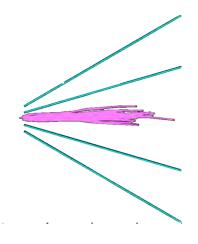
X Interpretability

✓ Predictability

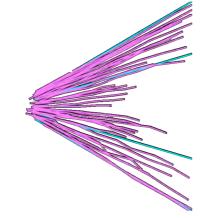
Social Forecasting Learning Representation of Crowds

Challenge 2: Free will





Average L2 Loss $\ell_{Recon} = \frac{1}{K} \sum_{k} \|Y_i - \hat{Y}_i^{(k)}\|$



Winner-takes-all Loss

$$\mathcal{L}_{variety} = \min_{k} \|Y_i - \hat{Y}_i^{(k)}\|$$



Adversarial Loss [1]

Adversarial Loss w/ Collab. Sampling [2]

Our work

^[1] Social GAN (Generative Adversarial Network), CVPR'18

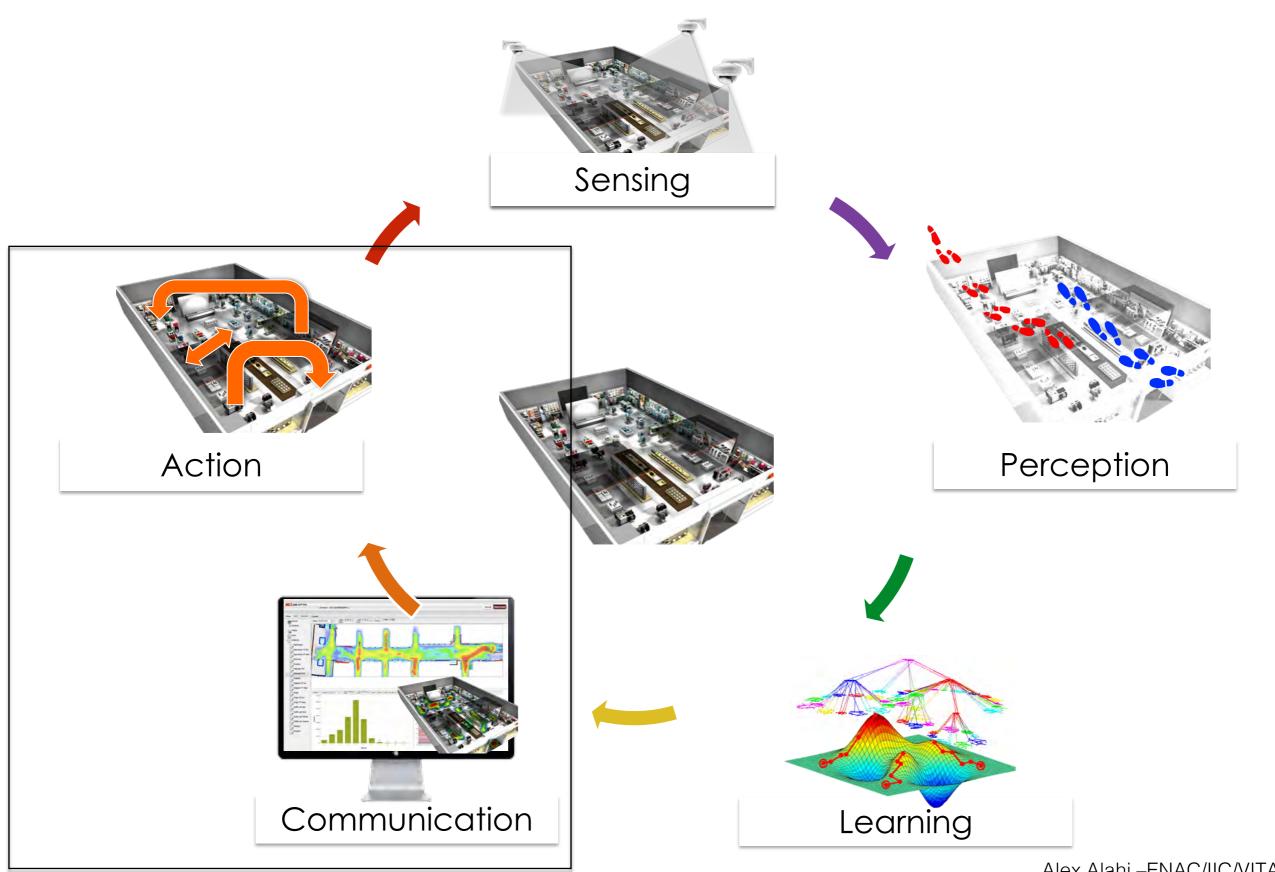
Performance evaluation

	Methods*	ADE/FDE	
Knowledge-driven	Kalman Filter	0.87/1.69	(
	DCM '06	0.68/1.40	
	Social Force '98		
	ORCA '08	0.68/1.40	
Our data-driven	LSTM '14	0.61/1.31	
	S-GAN '18	0.54/1.17	_
	S-LSTM '16		
	D-LSTM '20	0.57/1.24	

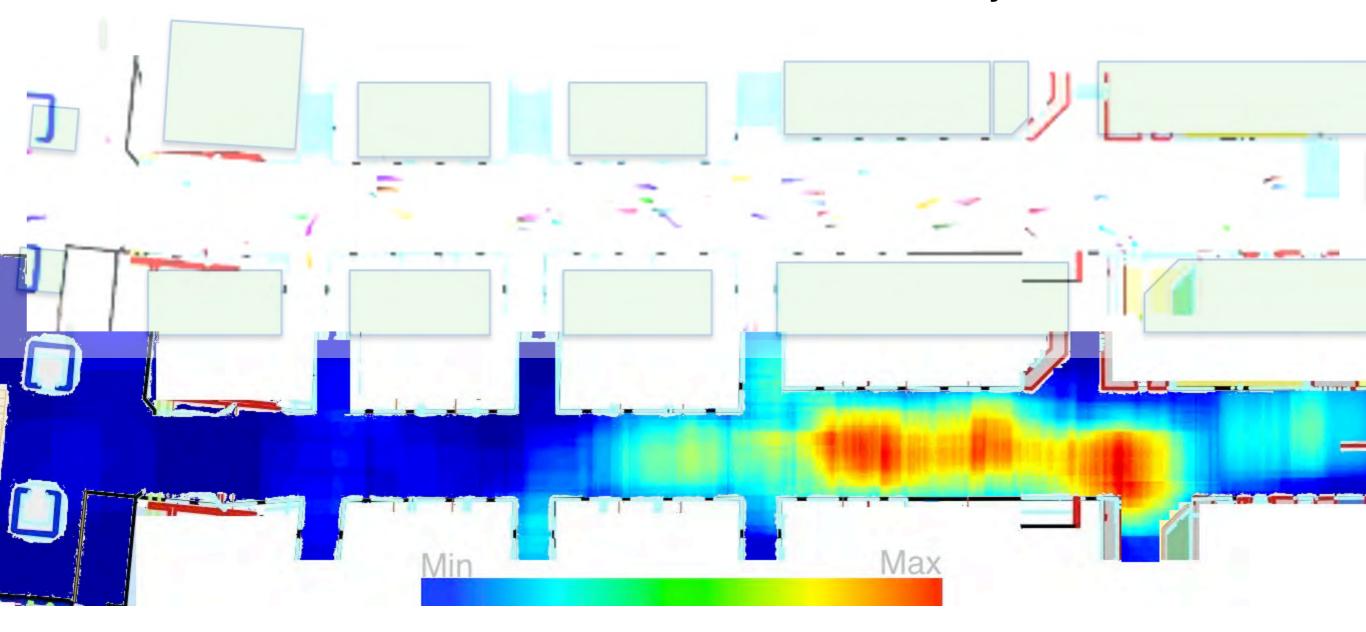
0.55/1.18 7.6

ADE: Average displacement error in m FDE: Final displacement error in m All references available in [1]

Al for the built environments



What can we learn from all these trajectories?



People

42 million

Av. duration

1 minute

Av distance

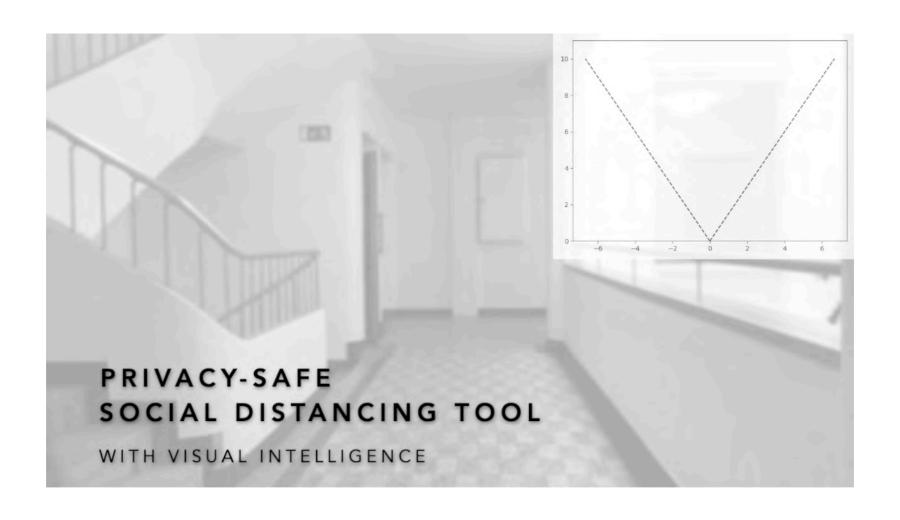
100m

Density (up to)

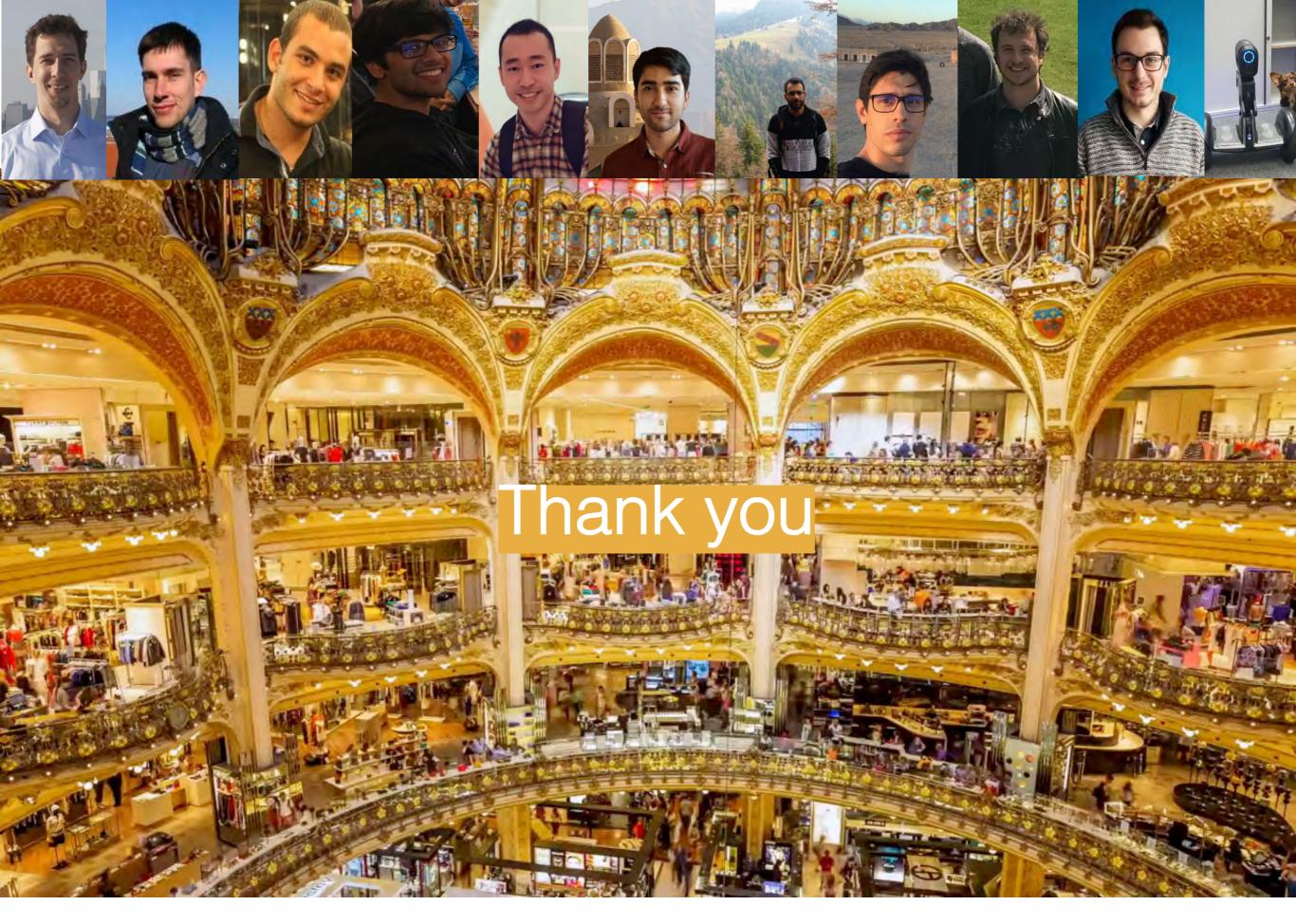
1 pedestrian/m²

Paths (O/D)

196



Bertoni, L., Kreiss, S., Alahi, A, Perceiving humans: from monocular 3D localization to social distancing, arxiv



#Open Science

Code on-line: vita.epfl.ch/code

Perception:

- [1] S. Kreiss et al., OpenPifPaf library for pose estimation, CVPR'19 (licensed)
- [2] L. Bertoni et al., Monocular 3D Pedestrian Localization and Uncertainty Estimation, ICCV'19
- [3] L. Bertoni et al., MonStereo, Stereo 3D detection
- [4] L. Bertoni et al., Perceiving Social Distancing, ITS'20
- [5] G. Adaimi et al., Perceiving Traffic from Aerial Images
- [6] G. Adaimi et al., Deep Visual Re-identification with Confidence

Prediction:

[7] Kothari et al., Trajnet++ library for spatio-temporal forecasting tasks (>15 implemented models)

Planning:

[8] C. Chen et al., Crowd-Robot Interaction: Crowd-aware Robot Navigation with Attention-based Deep Reinforcement Learning, ICRA'19

Generative models:

[9] Y. Liu* et al., Collaborative Sampling in GAN, AAAI'20 [10] A. Carlier et al., Deep SVG, NeurlPS'20

DCM + NN

[11] B. Sifringer et al., L-MNL, TRB'20

Tools

[12] Video Ultimate labeling